Sommelet-Hauser or Stevens Rearrangement of 1-Methyl-2-(substitutedphenyl)piperazinium 1-Methylides. Ring Enlargement of Piperazines to Seven- or Nine-membered Cyclic Amines

Tomoko Kitano, Naohiro Shirai, Manami Motoi and Yoshiro Sato*
Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

Abstract

Fluoride ion-induced desilylation of 4-acetyl-1-methyl-2-(4-substituted phenyl)-1-trimethylsilylmethylpiperazinium iodides 5 gave 5 -acetyl-2-methyl-10-substituted 1,3,4,5,6,11a-hexahydro$2 H-2,5$-benzodiazonines 7 and/or 5-acetyl-2-methyl-10-substituted 2,3,4,5,6,7-hexahydro-1H-2,5benzodiazonines 8 (Sommelet-Hauser rearrangement products). However, a similar treatment of 1-methyl-3-oxo-2-phenyl-1-trimethylsilylmethylpiperazinium iodide 10 afforded 1-methyl-6-phenyl-2,3,6,7-tetrahydro-1H-diazepine-5-one 12 (Stevens rearrangement product).

Sommelet-Hauser rearrangement of ammonium ylides is an attractive method in ring enlargement reactions of cyclic amines. ${ }^{1}$ However, this method has rarely been used in organic synthesis because base-promoted ylide formation often results in a mixture of the rearrangement products due to the difficulty in specifying the location of the ylide anion. ${ }^{2}$
In ylide formation by fluoride ion-induced desilylation of 1(trimethylsilyl)alkylammonium salts, the ylide anions locate regioselectively on carbons with which the silyl groups had linked. ${ }^{3,4}$ We earlier reported the application of this method to ring enlargement. ${ }^{4 d, g, i, k}$ We report herein the synthesis of new 9membered cyclic amines, 2,3,4,5,6,7-hexahydro- $1 \mathrm{H}-2,5$-benzodiazonines starting from 2-phenylpiperazines.
2-Phenyl-1-trimethylsilylmethylpiperazine 3a and a 2-(4-methoxyphenyl)-analogue $\mathbf{3 b}$ were prepared by reaction of 3-(4substituted phenyl)piperazin-2-ones 1a, b with (iodomethyl)trimethylsilane followed by reduction with lithium aluminium hydride. Amines 3a, b were acetylated with acetic anhydride and then quaternized with iodomethane to give a mixture of cis- and trans-4-acetyl-1-methyl-2-(4-substituted phenyl)-1trimethylsilylmethylpiperazinium iodides $\mathbf{5 a}, \mathbf{b} . \dagger$
Reaction of 5a, b with caesium fluoride was carried out in dimethylformamide (DMF) at room temperature. Spectroscopic analysis of the reaction mixture from 5 a showed the presence of 5-acetyl-2-methyl-1,3,4,5,6,11a-hexahydro-2H-2,5benzodiazonine $7 \mathrm{a}, 5$-acetyl-2-methyl-2,3,4,5,6,7-hexahydro1 H -2,5-benzodiazonine 8a, and 6-methyl-7-(2-vinylphenyl)-3,6-diazaheptan-2-one 9a (entries 1 and 2, Table 1). The conjugated triene compound 7 a , which is a [2,3]-sigmatropic rearrangement product of ylide 6 a, still remained after 48 h . However, isolation of 7a failed because of its partial isomerization on a silica or an aluminium oxide column. Similar treatment of $\mathbf{5 b}$ gave only the conjugated triene compound 7 bb after 24 h (entry 4).
We previously reported that [2,3]-sigmatropic rearrangement products of para-methoxy-substituted benzylammonium ylides were isolable at room temperature but aromatized to the Sommelet-Hauser products with the aid of strongly basic amines such as 1,8 -diazabicyclo[5.4.0]undec-7-ene (DBU). ${ }^{41}$ When the reaction of 5 was carried out in the presence of DBU, the products changed from 7 to 8 (entries 3 and 5).
When piperazinone 2a was converted into 1 -methyl-3-oxo-2-phenyl-1-trimethylsilylmethylpiperazinium iodide 10 and similarly treated with CsF, 1-methyl-6-phenyl-2,3,6,7-tetra-hydro-1 H -diazepin-5-one 12 (Stevens rearrangement product)

[^0]

iv

6

8

9
Scheme 1 Reagents and conditions: i, $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{I}, \mathrm{MeCN}$, reflux, $10-$ 72 h ; ii, LiAlH_{4}, THF, reflux, 2 h ; iii, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}$, room temp., 1 h ; iv, MeI, MeCN, reflux, 10 h ; v, CsF, DMF, room temp. $24-48 \mathrm{~h}$
was obtained in 43% yield (Scheme 2). The formation of Stevens products from benzylammonium N-alkylides produced in non-basic media was depressed in the presence of DBU. ${ }^{4 l}$ In the reaction of 10, however, no change to the Sommelet-Hauser product was observed with the addition of DBU.

The restricted rotation around the amide $\mathrm{C}(\mathrm{O})-\mathrm{N}$ bonds complicated the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $4,5,7$ and 8 at room temperature. The assignment of 4,7 and 8 was performed

Table 1 Reaction of 4-acetyl-1-methyl-2-(4-substituted phenyl)-1-trimethylsilylmethylpiperazinium iodide 5 with CsF

Entry	R	Reaction time (h)	Additive b	Total yield (\%)	Ratio ${ }^{a}$ $\mathbf{7 : 8 : 9}$
$\mathbf{1}$	\mathbf{a}	H	24	-	59
2	\mathbf{a}	H	48	-	83
3	\mathbf{a}	H	48	DBU	70
4	b	MeO	24	-	59
5	b	MeO	48	DBU	74

${ }^{a}$ Determined from the proton ratios of ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{b}$ Five mole equivalents for 5 were added.

Scheme 2 Reagents and conditions: i, MeI, benzene, reflux, 10 h ; ii, CsF, DMF, room temp., 20 h
with the aid of $\mathrm{H}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ COSY, however, that of 5 was difficult because the (E) and (Z) isomers existed in the cis- and trans-isomers, respectively. In confirmation of the structures, 4b and 8 b were converted into the corresponding N-ethyl derivatives by lithium aluminium hydride reduction.

Experimental

DMF was dried by distillation from BaO under reduced pressure. CsF was dried $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ at $180^{\circ} \mathrm{C}$ under reduced pressure. Aluminium oxide (Merck, Aluminium oxide 90, 70-230 mesh) was used for column chromatographies. All melting and boiling points are uncorrected. J Values are given in Hz .

3-Phenyl-4-trimethylsilylmethylpiperazin-2-one 2a.-A solution of 3-phenylpiperazin-2-one ${ }^{5} 1 \mathrm{a}(14.10 \mathrm{~g}, 80 \mathrm{mmol})$ and (iodomethyl)trimethylsilane ${ }^{6}(8.60 \mathrm{~g}, 40 \mathrm{mmol})$ in MeCN (100 cm^{3}) was heated at reflux for 10 h and concentrated. The residue was dissolved in ethyl acetate ($100 \mathrm{~cm}^{3}$), washed with water (100 cm^{3}), and concentrated. The residue was recrystallized from hexane to give the title compound $2 \mathrm{a}(8.63 \mathrm{~g}, 80 \%$), m.p. $98-$ $102{ }^{\circ} \mathrm{C}$ (Found: C, 64.05; H, 8.25; N, 10.6. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{H}_{2} \mathrm{OSi}$ requires $\mathrm{C}, 64.08 ; \mathrm{H}, 8.45 ; \mathrm{N}, 10.67 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3170$ (NH), 1680 (CO) and $1250\left(\mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right)-0.03(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.71$ and $1.97(2 \mathrm{H}, \mathrm{AB}$ q, $J 14.7$, SiCH_{2}), 2.51 (1 H , ddd, J 12.1, 10.3 and $3.7,5-\mathrm{H}$), 2.98 (1 H , ddd, $J 12.1,3.7$ and $3.5,5-\mathrm{H}$), 3.23 (ddd, $1 \mathrm{H}, J 11.5,3.7$ and $3.5,6-\mathrm{H}$), $3.44-3.55(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $7.24-7.43(6 \mathrm{H}, \mathrm{m}$, NH and Ph).

3-(4-Methoxyphenyl)-4-trimethylsilylmethylpiperazin-2-one $\mathbf{2 b}$.-A solution of sodium ($3.22 \mathrm{~g}, 140 \mathrm{mmol}$) in ethanol (80 cm^{3}) was added to a solution of ethyl 2-bromo-2-(4-meth-
oxyphenyl)acetate ${ }^{7}$ ($32.70 \mathrm{~g}, 120 \mathrm{mmol}$) and ethylenediamine ($15.05 \mathrm{~g}, 251 \mathrm{mmol}$) in ethanol ($150 \mathrm{~cm}^{3}$), and the mixture was heated at reflux for 4 h . The mixture was filtered and concentrated. The residue was recrystallized from benzene to give 3-(4-methoxyphenyl)piperazin-2-one 1b ($15.27 \mathrm{~g}, 62 \%$), m.p. 136 $139^{\circ} \mathrm{C}$ (Found: C, 63.85; H, 6.85; N, 13.55. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 64.06; H, 6.84; $\mathrm{N}, 13.58 \%$); $v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 3250$, $3200(\mathrm{NH})$ and $1680(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.83$ (1 H, br s), $3.06(1 \mathrm{H}$, ddd, $J 4.4,8.8$ and $12.6,5-\mathrm{H}), 3.16(1 \mathrm{H}$, ddd, $J 4.4,8.8$ and $12.6,5-\mathrm{H}$), $3.37(1 \mathrm{H}$, ddd, $J 4.4,8.8$ and $11.6,6-\mathrm{H}$), 3.53 (1 H, ddd, $J 4.4,8.8$ and $11.6,6-\mathrm{H}$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 4.52 (1 $\mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.49(1 \mathrm{H}, \mathrm{br}$ s, NH), $6.88(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ph})$ and 7.33 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ph}$).

In the same way as described for 2 a , a solution of $1 \mathrm{~b}(13.01 \mathrm{~g}$, 63 mmol) and (iodomethyl)trimethylsilane ($7.56 \mathrm{~g}, 35 \mathrm{mmol}$) in $\mathrm{MeCN}\left(100 \mathrm{~cm}^{3}\right)$ was heated at reflux for 3 days and worked up. The residue was chromatographed on silica gel (methanolether, $5: 95$) to give the title compound $2 \mathrm{~b}(6.03 \mathrm{~g}, 65 \%$), m.p. $130-133{ }^{\circ} \mathrm{C}$ (recrystallized from ethyl acetate-hexane) (Found: $\mathrm{C}, 61.4 ; \mathrm{H}, 8.55 ; \mathrm{N}, 9.35 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ requires C, 61.60; H , 8.27; N, 9.58\%); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3200(\mathrm{NH}), 1680(\mathrm{CO})$ and $1260(\mathrm{SiMe}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)-0.02(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 1.69$ and $2.20\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J 14.7, \mathrm{SiCH}_{2}\right), 2.52(1 \mathrm{H}, \mathrm{ddd}$, $J 3.7,10.6$ and $12.7,5-\mathrm{H}), 3.00(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.25(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $3.53(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 6.73(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.88(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{Ph})$ and $7.31(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{Ph})$.

2-Phenyl-1-trimethylsilylmethylpiperazine 3a.-To a mixture of lithium aluminium hydride ($1.00 \mathrm{~g}, 26 \mathrm{mmol}$) in THF (90 cm^{3}) was added 2a ($6.46 \mathrm{~g}, 25 \mathrm{mmol}$). After 1 h of reflux, the reaction was quenched with $5 \% \mathrm{NaOH}\left(4 \mathrm{~cm}^{3}\right)$ and the mixture was filtered. The filtrate and washings of the precipitate with ether were concentrated and distilled to give the title compound 3a ($4.88 \mathrm{~g}, 80 \%$), b.p. $132^{\circ} \mathrm{C} / 0.3$ Torr* (Found: C, 67.5; H, 9.95; $\mathrm{N}, 11.15 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{Si}$ requires $\mathrm{C}, 67.68 ; \mathrm{H}, 9.74 ; \mathrm{N}, 11.28 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3260(\mathrm{NH})$ and $1250\left(\mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)-0.02(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.36$ and $2.02(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J$ $\left.14.5, \mathrm{SiCH}_{2}\right), 1.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.11(1 \mathrm{H}$, ddd, $J 11.2,9.3$ and $5.1), 2.67(1 \mathrm{H}, \mathrm{dd}, J 12.1$ and 9.9$), 2.85-3.05(5 \mathrm{H}, \mathrm{m})$ and $7.18-$ 7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

2-(4-Methoxyphenyl)-1-trimethylsilylmethylpiperazine 3b.In the same way, $\mathbf{2 b}(5.51 \mathrm{~g}, 19 \mathrm{mmol})$ and lithium aluminium hydride ($2.23 \mathrm{~g}, 59 \mathrm{mmol}$) were allowed to react in THF (100 cm^{3}) to give the title compound $3 \mathrm{~b}(5.00 \mathrm{~g}, 95 \%)$, m.p. $40-42^{\circ} \mathrm{C}$ (Found: C, 64.6; H, 9.4; $\mathrm{N}, 9.85 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OSi}$ requires C , $64.70 ; \mathrm{H}, 9.41 ; \mathrm{N}, 10.06 \%)$; $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1250\left(\mathrm{SiMe}_{3}\right)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)-0.03(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.33$ and $2.02\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J 14.4, \mathrm{SiCH}_{2}\right), 1.61(1 \mathrm{H}, \mathrm{br}$ s, NH), $2.10(1 \mathrm{H}$, ddd, $J 5.1,9.5$ and 11.3), $2.64(1 \mathrm{H}, \mathrm{dd}, J 10.9$ and 12.8), 2.85 (2 H, m), $2.96(3 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.84(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ph})$ and $7.22(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ph})$.

4-Acetyl-2-phenyl-1-trimethylsilylmethylpiperazine 4a.$\mathrm{Ac}_{2} \mathrm{O}(2.89 \mathrm{~g}, 28 \mathrm{mmol})$ was added to a chilled solution of 3a ($4.78 \mathrm{~g}, 19 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$. After 10 min of stirring, the mixture was poured into water ($100 \mathrm{~cm}^{3}$) and made alkaline with $10 \% \mathrm{NaOH}$. The $\mathrm{Et}_{2} \mathrm{O}\left(4 \times 50 \mathrm{~cm}^{3}\right)$ extract of the mixture was washed with water ($3 \times 50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and distilled to give the title compound $4 \mathrm{a}(5.06 \mathrm{~g}, 90 \%$), b.p. $200-205^{\circ} \mathrm{C} / 0.6$ Torr [a mixture of (E) and (Z) isomers, 57:43] (Found: C, 65.95; H, 9.15; N, 9.4. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OSi}$ requires $\mathrm{C}, 66.16 ; \mathrm{H}, 9.02 ; \mathrm{N}, 9.64 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1660(\mathrm{CO})$ and 1250 $\left(\mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)-0.02(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, 1.36 and $2.00\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J 14.5, \mathrm{SiCH}_{2}\right)$ and $7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$;

[^1](E): 2.04 (3 H, s, COMe), 2.00-2.05 (1 H, m, 6-H), 2.84 ($1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.00-3.10(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}$ and $6-\mathrm{H}), 3.58(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $4.55(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) ;(\mathrm{Z}): 2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.08-2.14(1$ H, m, 6-H), 2.44-2.62 (1 H, m, 3-H), $2.95(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.03$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.37(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and 4.45 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)-1.2$ (SiMe), 21.2 (COMe), 127.6 (Ph), 127.9 (Ph), 128.1 (Ph), $128.2(\mathrm{Ph}), 128.5$ $(\mathrm{Ph}), 128.7(\mathrm{Ph}), 141.1(\mathrm{Ph})$ and $168.5(\mathrm{CO})$; $(E): 41.9(\mathrm{C}-5)$, $46.6(\mathrm{Si}-\mathrm{C}-\mathrm{N}), 54.0(\mathrm{C}-3), 54.9(\mathrm{C}-6)$ and $71.3(\mathrm{C}-2) ;(Z): 46.5$ ($\mathrm{SiC}-\mathrm{N}$), 46.7 (C-5), $48.9(\mathrm{C}-3), 55.5(\mathrm{C}-6)$ and $70.5(\mathrm{C}-2)$.

4-Acetyl-2-(4-methoxyphenyl)-1-trimethylsilymethylpiper-

 azine $\mathbf{4 b}$.-In the same way, 3b $(3.98 \mathrm{~g}, 14 \mathrm{mmol})$ and acetic anhydride $(2.34 \mathrm{~g}, 23 \mathrm{mmol})$ were allowed to react in ether (25 cm^{3}) to give $4 \mathrm{~b}(4.48 \mathrm{~g}, 98 \%$), viscous oil [a mixture of (E) and (Z) isomers, $56: 44]$ (Found: $\mathrm{C}, 63.8 ; \mathrm{H}, 8.85 ; \mathrm{N}, 8.7$. $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ requires $\left.\mathrm{C}, 63.71 ; \mathrm{H}, 8.81 ; \mathrm{N}, 8.74 \%\right) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) ;(E):-0.03(9 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 1.32$ and $2.00(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J 14.5), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 2.10(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $2.88(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $5-\mathrm{H}), 3.05(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H}), 3.55(1$ $\mathrm{H}, \mathrm{dt}, J 13.2$ and $2.8,3-\mathrm{H}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 4.53(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 6.88(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{Ph})$ and $7.24(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{Ph}) ;(Z)$: $-0.02(9 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 1.32$ and $2.05\left(2 \mathrm{H}, \mathrm{AB}\right.$ q, $\left.J 14.5, \mathrm{SiCH}_{2}\right)$, $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 2.13(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $3.1,6-\mathrm{H}), 2.53$ (1 $\mathrm{H}, \mathrm{dd}, J 12.5$ and $11.0,3-\mathrm{H}), 2.80(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $2.9,2-\mathrm{H})$, $3.05(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.34(1 \mathrm{H}$, ddd, $J 12.5,12.5$ and $2.9,5-\mathrm{H})$, 3.71 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 4.42(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.84$ $(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{Ph})$ and $7.22(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67.8 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)-1.2(\mathrm{SiMe}), 21.2(\mathrm{MeCO}), 129.1(\mathrm{Ph}), 168.5$ (CO); (E): 41.9 (C-5), 46.3 ($\mathrm{Si}-\mathrm{C}-\mathrm{N}$), 54.0 (C-3), 54.9 (C-6), 55.3 $(\mathrm{MeO}), 70.4(\mathrm{C}-2), 114.0(\mathrm{Ph}) 133.1(\mathrm{Ph})$ and $159.2(\mathrm{Ph}) ;(Z)$: 46.2 ($\mathrm{SiC}-\mathrm{N}$), 46.8 (C-5), 49.0 (C-3), 55.2 (MeO), 55.5 (C-6), 69.7 (C-2), $113.8(\mathrm{Ph}), 133.3(\mathrm{Ph})$ and $159.0(\mathrm{Ph})$.4-Acetyl-1-methyl-2-phenyl-1-trimethylsilylmethylpiperazinium Iodide $5 \mathbf{5 a}$.-A solution of $\mathbf{4 a}(7.43 \mathrm{~g}, 26 \mathrm{mmol})$ and iodomethane ($18.9 \mathrm{~g}, 133 \mathrm{mmol}$) in acetonitrile ($30 \mathrm{~cm}^{3}$) was heated at reflux for 10 h and concentrated. The residue was recrystallized from a mixture of ethyl acetate and acetone to give the title compound 5a ($8.71 \mathrm{~g}, 79 \%$), m.p. $225-228^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 47.1 ; \mathrm{H}, 7.05 ; \mathrm{N}, 6.2 . \mathrm{C}_{17} \mathrm{H}_{29} \mathrm{IN}_{2} \mathrm{OSi}$ requires C , $47.22 ; \mathrm{H}, 6.76 ; \mathrm{N}, 6.48 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1660$ (CO) and $1250\left(\mathrm{SiMe}_{3}\right)$. Assignment of the ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$; CDCl_{3}) was difficult because (E) and (Z) isomers existed in cis5a and trans-5a, respectively.

4-Acetal-1-methyl-2-(4-methoxyphenyl)-1-trimethylsilylmethylpiperazinium Iodide $\mathbf{5 b}$.-In the same way, $\mathbf{4 b}(3.41 \mathrm{~g}, 10.7$ mmol) and iodomethane ($7.75 \mathrm{~g}, 54.6 \mathrm{mmol}$) were heated in acetonitrile ($15 \mathrm{~cm}^{3}$) and worked up to give the title compound 5b (4.19 g, 88\%), m.p. $150-153{ }^{\circ} \mathrm{C}$ (ethyl acetate-acetone) (Found: C, 46.8; H, 6.7; N, 5.75. $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{IN} \mathrm{N}_{2} \mathrm{O}_{2}$ Si requires C , $46.75 ; \mathrm{H}, 6.77 ; \mathrm{N}, 6.06 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1660(\mathrm{CO})$ and 1250 (SiMe_{3}). Assignment of the ${ }^{1} \mathrm{H}$ NMR $\operatorname{spectrum}(400 \mathrm{MHz}$; CDCl_{3}) was difficult because (E) and (Z) isomers existed in cis5b and trans-5b, respectively.

Reaction of 5a with CsF.-Ammonium salt 5a (1.30 g, 3 mmol) was placed in a $30 \mathrm{~cm}^{3}$ flask equipped with a magnetic stirrer, a septum, and a test tube connected with the flask by a short piece of rubber tube. $\operatorname{CsF}(2.0 \mathrm{~g}, 13 \mathrm{mmol})$ was placed in the test tube. The apparatus was dried under reduced pressure and was flushed with N_{2}. DMF ($10 \mathrm{~cm}^{3}$) was added via syringe, and then CsF was added from the test tube. The mixture was stirred for the time listed in Table 1 at room temp., poured into $1 \% \mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$, and extracted with ethyl acetate $\left(4 \times 100 \mathrm{~cm}^{3}\right)$. The extract was washed with $1 \% \mathrm{NaHCO}_{3}$ $\left(3 \times 50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced
pressure. ${ }^{1} \mathrm{H}$ NMR spectroscopy of the residual oil indicated the presence of 5-acetyl-2-methyl-1,3,4,5,6,11a-hexahydro-2H-2,5benzodiazonine 7a, 5-acetyl-2-methyl-2,3,4,5,6,7-hexahydro-1H-2,5-benzodiazonine 8a and 6-methyl-7-(2-vinylphenyl)-3,6-di-azaheptan-2-one 9a. The samples of $8 \mathbf{a}$ and $9 \mathbf{9}$ were isolated on an HPLC column (Merck Hibar LiChrosorb $\mathrm{NH}_{2}, 250 \times 10$ $\mathrm{mm}, \mathrm{Et}_{2} \mathrm{O}$). The ratio was calculated on the basis of the proton ratios of ${ }^{1} \mathrm{H}$ NMR spectra (Table 1).

7a; (not isolated); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 3.80-3.87$ (1 $\mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.97-4.07(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{dd}, J 17.4$ and 7.3 , $6-\mathrm{H}), 5.45-5.51(1 \mathrm{H}, \mathrm{m}, 11 \mathrm{a}-\mathrm{H}), 5.59-5.71(3 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H}$ and $11-\mathrm{H})$ and $5.84-5.96(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $8-\mathrm{H})$, the other signals were not assigned due to overlapping with those of $8 \mathbf{a}$ and 9 a .

8a; b.p. $175^{\circ} \mathrm{C} / 0.6$ Torr (Kugelrohr) (Found: C, 72.45; H, 9.0; N, 12.0. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.38 ; \mathrm{H}, 8.68 ; \mathrm{N}, 12.06 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1660(\mathrm{CO})$. The presence of (E) and (Z) isomers was observed on the ${ }^{1} \mathrm{H}$ NMR spectrum but the assignment was difficult (isomer-1/isomer-2, $53: 47$); $\delta_{\mathbf{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\mathrm{Me}_{4} \mathrm{Si}$) 7.10-7.24 (4 H, m, Ph); isomer-1: 2.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.55 ($2 \mathrm{H}, \mathrm{t}, J 5.1,3-\mathrm{H}$), 3.24 ($2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), $3.28(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.62(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ and $3.72(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$; isomer-2: $2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.45(2 \mathrm{H}, \mathrm{t}, J 5.1,3-\mathrm{H}), 2.56(3 \mathrm{H}$, $\mathrm{s}, \mathrm{NMe}), 3.09(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.28(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.62(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H})$ and $3.75(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$.

9a; b.p. $165^{\circ} \mathrm{C} / 0.5$ Torr (Kugelrohr) (Found: $\mathbf{M}^{+}, 232.1572$. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\left.M, 232.1575\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 1.87$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.23 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.44 ($2 \mathrm{H}, \mathrm{t}, J 5.7$, $\left.\mathrm{MeNCH}_{2}\right), 3.25(2 \mathrm{H}, \mathrm{q}, J 5.7,4-\mathrm{H}), 3.56(2 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 5.31(1 \mathrm{H}$, dd, $J 11.0$ and $\left.1.3,=\mathrm{CH}_{2}\right), 5.71\left(1 \mathrm{H}, \mathrm{dd}, J 17.5\right.$ and $\left.1.3,=\mathrm{CH}_{2}\right)$, $5.95(1 \mathrm{H}$, br s, NH), $7.12(1 \mathrm{H}$, dd, $J 17.5$ and $11.0, \mathrm{PhCH}=), 7.16-$ $7.32(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.53(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $1.1, \mathrm{Ph})$.

Reaction of $\mathbf{5 b}$ with CsF .-In the same way, $\mathbf{5 b}$ ($0.92 \mathrm{~g}, 1.99$ mmol) and CsF $(1.52 \mathrm{~g}, 10.0 \mathrm{mmol})$ were allowed to react in DMF ($10 \mathrm{~cm}^{3}$) and worked up to give 5 -acetyl-2-methyl-10-methoxy-1,3,4,5,6,11a-hexahydro-2 \mathbf{H}-2,5-benzodiazonine $7 \mathbf{b}$, an undistillable viscous oil [a mixture of (E) and (Z) isomers, 66:34]; $\lambda_{\max }($ hexane $) / \mathrm{nm} \mathrm{310;} \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)(E)$: 2.10 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$), 2.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $2.40(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.50$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $2.83(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.01(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.42(1 \mathrm{H}$, $\mathrm{m}, 11 \mathrm{a}-\mathrm{H}), 3.53(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.93(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 4.39(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 5.9,11-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{d}, J 9.9,9-\mathrm{H})$ and $6.01(1 \mathrm{H}, \mathrm{d}, J 9.9,8-\mathrm{H}) ;(Z)$: 2.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$), 2.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $2.40(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.55$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.83(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.31(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.40(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 3.54(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.60(1 \mathrm{H}, \mathrm{m}, 11 \mathrm{a}-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 5.9,11-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{d}$, $J 9.9,9-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$ and $6.05(1 \mathrm{H}, \mathrm{d}, J 9.9,8-\mathrm{H})$.

Reaction of $5 \mathbf{5 a}, \mathbf{b}$ with CsF in the Presence of DBU.-In a manner similar to that described for the reaction of $\mathbf{5 a}$ or $\mathbf{5 b}$ with CsF, a solution of 5 a or $\mathbf{5 b}(2 \mathrm{mmol})$ in DMF $\left(10 \mathrm{~cm}^{3}\right)$ was prepared and DBU $(1.52 \mathrm{~g}, 10 \mathrm{mmol})$ was added via syringe. Then, CsF ($1.52 \mathrm{~g}, 10 \mathrm{mmol}$) was added. The residual oil was purified on an aluminium oxide column (hexane-ethyl acetate) to give $8 \mathbf{8}$ or 5 -acetal-10-methoxy-2-methyl-2,3,4,5,6,7-hexahydro- $1 \mathrm{H}-2,5$-benzodiazonine $\mathbf{8 b}$. The results are shown in Table 1.

8b; b.p. $188^{\circ} \mathrm{C} / 1$ Torr (Kugelrohr) (Found: C, 68.6; H, 8.55; $\mathrm{N}, 10.65 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.67 ; \mathrm{H}, 8.45 ; \mathrm{N}, 10.68 \%$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1640(\mathrm{CO})$. The presence of (Z) and (E) isomers was observed on the ${ }^{1} \mathrm{H}$ NMR spectrum but the assignment was difficult (isomer-1/isomer-2, $58: 42) ; \delta_{\mathbf{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\mathrm{Me}_{4} \mathrm{Si}$); isomer-1: 2.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.56 ($2 \mathrm{H}, \mathrm{t}, 5.1,3-\mathrm{H}$), 3.18 (2 H, br s, $7-\mathrm{H}$), 3.28 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.58 $(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.69(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.71-6.78$ $(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$ and $11-\mathrm{H})$ and $7.03(1 \mathrm{H}, \mathrm{d}, J 8.4,8-\mathrm{H})$; isomer-2: $2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.46(2 \mathrm{H}, \mathrm{d}, J 5.0,3-\mathrm{H}), 2.55(3 \mathrm{H}, \mathrm{s}$,

NMe), 3.02 ($2 \mathrm{H}, \mathrm{d}, J 5.4,7-\mathrm{H}$), 3.28 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.58 (2 H , $\mathrm{m}, 6-\mathrm{H}), 3.71(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 3.79$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.71-6.78 (2 H , $\mathrm{m}, 9-\mathrm{H}$ and $11-\mathrm{H})$ and $7.09(1 \mathrm{H}, \mathrm{d}, J 8.2,8-\mathrm{H})$.

1-Methyl-3-oxo-2-phenyl-1-trimethylsilylmethylpiperazinium Iodide 10.-A solution of $2 \mathrm{a}(3.94 \mathrm{~g}, 15 \mathrm{mmol})$ and $\mathrm{MeI}(10.6 \mathrm{~g}$, 75 mmol) in benzene ($10 \mathrm{~cm}^{3}$) was heated at reflux for 10 h and concentrated. The residue was recrystallized from a mixture of acetone and methanol to give the title compound $10(4.09 \mathrm{~g}$, 67%), m.p. $225-230^{\circ} \mathrm{C}$ (a mixture of cis and trans isomers, 17:83)* (Found: C, 44.45; H, 6.35; N, 6.8. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{IN}_{2} \mathrm{OSi}$ requires C, $44.55 ; \mathrm{H}, 6.23 ; \mathrm{N}, 6.93 \%)$; $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1680$ (CO) and $1260\left(\mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ cis -10 : 0.22 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 2.50 and 3.17 ($2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J 14.8, \mathrm{SiCH}_{2}$), 3.53 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.77-3.93 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 4.05-4.15 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $4.20-4.24(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.44-7.84(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $8.26(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; trans-10: $0.27(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 3.14$ and 3.87 ($2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 14.8, \mathrm{SiCH}_{2}$), 3.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.77-3.93(2 H, m, $6-\mathrm{H}), 4.05-4.15(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.30-4.40(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 6.15(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H})$, $7.44-7.84(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $8.18(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

Reaction of $\mathbf{1 0}$ with CsF.-In a manner similar to that described for the reaction of 5 with $\mathrm{CsF}, 10(1.21 \mathrm{~g}, 3 \mathrm{mmol})$ and CsF ($2.0 \mathrm{~g}, 13 \mathrm{mmol}$) were allowed to react in DMF $\left(10 \mathrm{~cm}^{3}\right)$. The reaction mixture was poured into $1 \% \mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CHCl}_{3}\left(4 \times 100 \mathrm{~cm}^{3}\right)$. The extract was washed with $1 \% \mathrm{NaHCO}_{3}\left(2 \times 100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was recrystallized from ethyl acetate to give 1-methyl-6-phenyl-2,3,6,7-tetrahydro-1H-diazepin-5-one 12 (262 mg, 43\%), m.p. $123-125^{\circ} \mathrm{C}$ (Found: C, 70.15; H, 8.0; N, 13.7. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ required $\mathrm{C}, 70.56 ; \mathrm{H}, 7.89 ; \mathrm{N}, 13.71 \%$); $\nu_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1660(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 2.33-2.45 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 2.39 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.78-2.93 ($3 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}$ and $7-\mathrm{H}), 3.14-3.26(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.50-3.63(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $3.95(1 \mathrm{H}$, dd, $J 1.98$ and $8.25,6-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and 7.20-7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Lithium Aluminium Hydride Reduction of $\mathbf{4 b}$.-A mixture of $\mathbf{4 b}(31 \mathrm{mg}, 0.097 \mathrm{mmol})$ and lithium aluminium hydride (12 mg , 0.316 mmol) in THF ($5 \mathrm{~cm}^{3}$) was heated at reflux for 3.5 h . The reaction was quenched with saturated potassium sodium tartrate ($25 \mathrm{~cm}^{3}$) and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 4-ethyl-2-(4-methoxyphenyl)-1-trimethylsilylmethylpiperazine ($25 \mathrm{mg}, 86 \%$), yellow oil; $\delta_{\mathbf{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$) $-0.03(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.06\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.35$ and 2.02 ($2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J 14.4, \mathrm{SiCH}_{2}$), 1.95 ($1 \mathrm{H}, \mathrm{t}, J 10.6,3-\mathrm{H}$), 2.18 (1 $\mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.29(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.37\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.78(1 \mathrm{H}, \mathrm{dt}, J 2.5$ and $11.4,6-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{dd}, J 2.9$ and 10.6 ,
$3-\mathrm{H}), 3.01(1 \mathrm{H}, \mathrm{dt}, J 2.5$ and $11.4,5-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{dd}, J 2.9$ and $10.6,2-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.84(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ph})$ and $7.24(2$ H, d, J 7.5, Ph); EIMS m/z $306\left(\mathrm{M}^{+}, 20 \%\right.$) and 233 (100) [Found: $\mathbf{M}^{+}, 306.2129$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OSi}: ~ M, 306.2126$].

Lithium Aluminium Hydride Reduction of 8b.-In a manner similar to that described above, a mixture of $8 \mathrm{~b}(\mathbf{4 6} \mathrm{mg}, 0.175$ mmol) and lithium aluminium hydride ($14 \mathrm{mg}, 0.369 \mathrm{mmol}$) in THF ($5 \mathrm{~cm}^{3}$) was allowed to react to give 5 -ethyl-10-methoxy-2-methyl-2,3,4,5,6,7-hexahydro-1H-2,5-benzodiazonine (31 mg , 69%), pale yellow oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.08(3 \mathrm{H}, \mathrm{t}$, $J 7.1$), 2.35 ($2 \mathrm{H}, \mathrm{dd}, J 5.9$ and 4.8), 2.55 ($3 \mathrm{H}, \mathrm{s}$, NMe), 2.54-2.57 $(2 \mathrm{H}, \mathrm{m}), 2.60(2 \mathrm{H}, \mathrm{q}, J 7.1), 2.64(2 \mathrm{H}, \mathrm{m}), 2.80(2 \mathrm{H}, \mathrm{m}), 3.80(3$ $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.08(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and $2.7,9-\mathrm{H})$, $6.86(1 \mathrm{H}, \mathrm{d}, J 2.7,11-\mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{d}, J$ 8.2, 8-H); EIMS $m / z 248$ ($\mathbf{M}^{+}, 41 \%$), 190 (100) and 134 (86) [Found: $\mathbf{M}^{+}, 248.1903$. Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: M, 248.1887\right]$.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 04671301) provided by the Ministry of Education, Science and Culture, Japan.

References

1 M. Hesse, Ring Enlargement in Organic Chemistry, VCH, Weinheim, 1991, p. 83.
2 S. H. Pine, Org. React., 1970, 18, 403.
3 For a review of desilylation of α-silyl onium salts, see E. Vedejs and F. G. West, Chem. Rev., 1986, 86, 941.

4 (a) M. Nakano and Y. Sato, J. Org. Chem., 1987, 52, 1844; (b) N. Shirai and Y. Sato, J. Org. Chem., 1988, 53, 194; (c) H. Sugiyama, Y. Sato and N. Shirai, Synthesis, 1988, 988; (d) N. Shirai, F. Sumiya, Y. Sato and M. Hori, J. Org. Chem., 1989, 54, 836; (e) S. Okazaki, N. Shirai and Y. Sato, J. Org. Chem., 1990, 55, 334; (f) N. Shirai, Y. Watanabe and Y. Sato, J. Org. Chem., 1990, 55, 2767; (g) F. Sumiya, N. Shirai and Y. Sato, Chem. Pharm. Bull., 1991, 39, 36; (h) Y. Machida, N. Shirai and Y. Sato, Synthesis, 1991, 117; (i) T. Kitano, N. Shirai and Y. Sato, Synthesis, 1991, 996; (j) T. Tanaka, N. Shirai and Y. Sato, Chem. Pharm. Bull., 1992, 40, 518; (k) T. Kitano, N. Shirai and Y. Sato, Chem. Pharm. Bull., 1992, 40, 768; (l) T. Tanaka, N. Shirai, J. Sugimori and Y. Sato, J. Org. Chem., 1992, 57, 5034; (m) T. Usami, N. Shirai and Y. Sato, J. Org. Chem., 1992, in the press.
5 W. R. Roderich, H. J. Platte and C. B. Pollard, J. Med. Chem., 1966, 9, 181.

6 S. Ambasht, S. K. Chiu, P. E. Peterson and J. Queen, Synthesis, 1980, 318.

7 J. W. Epstein, H. J. Brabander, W. J. Fanshawe, C. M. Hofmann, T. C. McKenzie, S. R. Safir, A. C. Osterberg, D. B. Cosnlich and F. M. Lovell, J. Med. Chem., 1981, 24, 481.

Paper 2/035661
Received 6th July 1992
Accepted 13th August 1992

[^0]: \dagger We temporarily assigned the major product to the trans-isomer and the minor product to the cis-isomer.

[^1]: * 1 Torr $=133.322 \mathrm{~Pa}$.

